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INTRODUCTION 
 

A map in computer science programming is an associative container consisting of a key 
value mapped to some element.  The C++ programming language provides two types of map 
containers within the standard template library, the std::map and the std::unordered_map classes.  
The main difference between these two containers is the way in which the elements are stored. In 
the std::unordered_map, the elements are not stored in order by the key. The std::unordered_map 
elements are placed into “buckets” based on a hash value computed for their key.  

 
The underlying structure of a std::map is typically a binary search tree.  The std::map is 

thought to be generally slower than unordered maps but certainly have their use if ordered access is 
necessary.  The std::unordered_map is stored in a hash table.  This allows for faster access to 
elements based on a hash computation done on the key value.  This computed value is then used to 
look up the location of the element. 
 

 
METHODOLOGY 

 
In order to test the performance of these containers for comparison, a small program was 

written to measure and then log the execution time of certain tasks involving the containers.  The 
main concentration was on some of the more common tasks such as inserting, finding, erasing, and 
traversal.  The following is the program written to accomplish this: 

 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
  LARGE_INTEGER frequency; 
  QueryPerformanceFrequency(&frequency); 
 
  LARGE_INTEGER starting_time, ending_time, elapsed_microseconds; 
 
  srand(static_cast<unsigned int>(time(nullptr))); 
 
  std::ofstream a_file("outfile.txt"); 
 
  std::map<unsigned int, unsigned int> ordered_map; 
  std::unordered_map<unsigned int, unsigned int> unordered_map; 
 
  std::vector<unsigned int> my_ints; 
  std::vector<unsigned int> find_ints; 
  auto intergers = 0u; 
  for(auto j = 0u; j < 20; ++j) 
  { 
    intergers += 100000; 
 
    //clear all vectors and arrays 
    my_ints.clear(); 
    find_ints.clear(); 
    ordered_map.clear(); 
    unordered_map.clear(); 
 
    //populate vector 
    for(auto i = 0u; i < intergers; ++i) 
      my_ints.push_back(rand() % intergers); 
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    //add 10 elements to find 
    for(auto i = 0; i < 10; ++i) 
      find_ints.push_back(rand() % intergers); 
 
    //populate ordered map 
    QueryPerformanceCounter(&starting_time); 
 
    for(const auto &j : my_ints) 
      ordered_map.insert(std::pair<unsigned int, unsigned int>(j, j)); 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
    auto time_elapsed_ord_insert = static_cast<double>((elapsed_microseconds.QuadPart * 
1000000.0) / frequency.QuadPart); 
    //printf("Ordered Map Insert took: %4.2f microseconds\n", time_elapsed_ord_insert); 
 
 
 
    //populate unordered map 
    QueryPerformanceCounter(&starting_time); 
 
    for(const auto &j : my_ints) 
      unordered_map.insert(std::pair<unsigned int, unsigned int>(j, j)); 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
    auto time_elapsed_unordered_insert = static_cast<double>((elapsed_microseconds.QuadPart * 
1000000.0) / frequency.QuadPart); 
    //printf("Unordered Map Insert took: %4.2f microseconds\n", time_elapsed_unordered_insert); 
 
 
 
    //find some ints in ordered map 
    QueryPerformanceCounter(&starting_time); 
 
    for(const auto &j : find_ints) 
      auto it = ordered_map.find(j); 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
    auto time_elapsed_ordered_find = static_cast<double>((elapsed_microseconds.QuadPart * 
1000000.0) / frequency.QuadPart); 
    //printf("Ordered Map Find took: %4.2f microseconds\n", time_elapsed_ordered_find); 
 
 
 
    //find the same ints in unordered map 
    QueryPerformanceCounter(&starting_time); 
 
    for(const auto &j : find_ints) 
      auto it = unordered_map.find(j); 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
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    auto time_elapsed_unordered_find = static_cast<double>((elapsed_microseconds.QuadPart * 
1000000.0) / frequency.QuadPart); 
    //printf("Unordered Map Find took: %4.2f microseconds\n", time_elapsed_unordered_find); 
 
 
 
    //erase some ints in ordered map 
    QueryPerformanceCounter(&starting_time); 
 
    for(const auto &j : find_ints) 
      auto it = ordered_map.erase(j); 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
    auto te_ordered_delete = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) / 
frequency.QuadPart); 
 
 
 
    //erase the same ints in unordered map 
    QueryPerformanceCounter(&starting_time); 
 
    for(const auto &j : find_ints) 
      auto it = unordered_map.erase(j); 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
    auto te_unordered_delete = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) / 
frequency.QuadPart); 
 
 
 
    //range ordered map 
    QueryPerformanceCounter(&starting_time); 
 
    auto it = ordered_map.begin(); 
    for(const auto &j : ordered_map) 
      ; 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
    auto te_ordered_range = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) / 
frequency.QuadPart); 
 
 
    //range unordered map 
    QueryPerformanceCounter(&starting_time); 
 
    for(const auto &j : unordered_map) 
      ; 
 
    QueryPerformanceCounter(&ending_time); 
    elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
    auto te_unordered_range = static_cast<double>((elapsed_microseconds.QuadPart * 1000000.0) / 
frequency.QuadPart); 
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    a_file << intergers << ","; 
    a_file << time_elapsed_ord_insert << ","; 
    a_file << time_elapsed_unordered_insert << ","; 
    a_file << time_elapsed_ordered_find << ","; 
    a_file << time_elapsed_unordered_find << ","; 
    a_file << te_ordered_delete << ","; 
    a_file << te_unordered_delete << ","; 
    a_file << te_ordered_range << ","; 
    a_file << te_unordered_range << "\r\n";//"\r\n"; 
 
    printf("Integers: %d \tOrdered Insert: %4.2f \tUnordered Insert: %4.2f\r\n", intergers, 
time_elapsed_ord_insert, time_elapsed_unordered_insert); 
    printf("Integers: %d \tOrdered Find : %4.2f \t Unordered Find : %4.2f\n", intergers, 
time_elapsed_ordered_find, time_elapsed_unordered_find); 
    printf("Integers: %d \tOrdered Erase : %4.2f \t Unordered Erase : %4.2f\n", intergers, 
te_ordered_delete, te_unordered_delete); 
    printf("Integers: %d \tOrdered Range : %4.2f \t Unordered Range : %4.2f\n", intergers, 
te_ordered_range, te_unordered_range); 
  } 
 
  a_file.close(); 
 
  printf("All done!\n"); 
 
  //this stops the program in order to see data; 
  //getchar(); 
 
 return 0; 
} 

 

This program first populates two standard vectors with random numbers.  The first one stores 
integers that will be inserted into the containers.  The second one consists of 10 random numbers 
used for finding values in the maps.  The next step was to measure how long it took to insert all the 
values into the containers.  Then, the time it took to find all 10 values was recorded, and then the 
time it took for the removal of all 10 of those values was recorded.  Lastly, the traversal of the entire 
map was timed. Figures 1 through 4 show the measurements that were logged. 
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Figure 1 
Map insert 

 

 
 

Figure 2 
Map find 
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Figure 3 
Map erase 

 

 
 

Figure 4 
Map range access 
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CONCLUSIONS 
 

The std::unordered_map outperformed the std::map in all categories measured.  If it is not 
necessary to have the elements sorted, using the std::unordered_map class is suggested.  Using the 
std::unordered_map class will make your program faster and more efficient.
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